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In nuclear pressurized water reactors, information about #uid masses or #uid levels is
required, especially in the reactor vessel, where the core of the reactor must be immersed, to
avoid damage or accidents. To reinforce the existing instrumentation, the possibilities of an
immersed torsional wave sensor (that is, an elastic solid waveguide) have already been
looked into and modelled, considering an incompressible surrounding #uid. Yet, in case of
depressurization, the #uid can turn into a two-phase #uid. This is the reason why a way to
extend the existing model has been investigated. As a "rst step, in this paper, the
compressibility of the surrounding #uid has been taken into account.

Some assumptions have been made: the transverse dimensions of the waveguide are small
compared to its length and the wavelengths in the #uid. The focus is on a cylindrical
waveguide, with an elliptic cross-section. Use is made of elliptic co-ordinates and Mathieu
functions. The analysis starts with the elasticity equations for the waveguide. Then, from the
exact expression of the pressure exerted by the #uid on the waveguide boundary,
a long-wavelength approximation is obtained. In the end, the principle of energy
conservation is applied, leading to an approximate equation governing the #uid-loaded
waveguide motion. Finally, some simulations are made, highlighting the in#uence of the
compressibility. ( 2000 Academic Press
1. INTRODUCTION

1.1. SHORT DESCRIPTION OF A NUCLEAR PRESSURIZED WATER REACTOR

To make the context of the work clear, a summary of the principle of a nuclear
pressurized water reactor (PWR) is given. A nuclear power station aims at generating vapor
at high pressure, the expansion of which makes a turbine turn, driving the
alternating-current generator. The PWR is a reactor with separated circuits of thermic
transfer (see Figure 1).

f The primary circuit, a closed cooling circuit, ensures heat transfer from the core to the
secondary circuit. In this circuit, the pressurized water #ows through the core, where
nuclear reactions take place, and picks up heat from it.
0022-460X/00/220329#24 $35.00/0 ( 2000 Academic Press



Figure 1. Scheme of a pressurized water reactor (from a document from the French Atomic Energy
Commission).
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f This primary circuit water is then able to heat the secondary circuit water up to boiling
temperature. Steam is produced, which works the turbine.

For the steam to have the required characteristics (of temperature and pressure), the
primary #uid needs to have a temperature as high as possible (about 3003C), which implies
a high pressure too (about 1)55]107 Pa).

Now focus on the reactor vessel, which is 13 m high and has a diameter of 4 m. It contains
the core and the primary water. The core, where the nuclear reactions take place, consists of
fuel assemblies forming a cylinder. The primary water

f takes heat from the core and transfers it to the steam generator;
f acts as a moderator, to partly control the reactivity of the nuclear reactor (it contains

boron, which absorbs neutrons).

This is the reason why water level measurement is such an important matter. There must be
enough water, to avoid both core damage and nuclear accidents.

1.2. THE TORSIONAL WAVE SENSOR

The need for water level control has been highlighted. Now a way to measure the water
level, or equivalent water level is sought. Indeed, in case of depressurization in the primary



Figure 2. Some geometric de"nitions for the torsional wave sensor.
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circuit, the #uid can turn into a two-phase #uid (water with steam bubbles), and engineers
are interested in knowing the level which would be e!ective after repressurization.

At the present time, in pressurized water reactor vessels, the water level is controlled by
means of a di!erential pressure sensor, which measures the di!erence of pressure between
the top and the bottom of the vessel. The level is then derived. For future reactors,
alternative methods are sought, which would avoid going through the bottom of the vessel.
Most of the traditional methods aiming at measuring levels use technologies which are not
compatible with the physical environment of reactor vessels (for example, the design of the
vessel and of its internal structures strongly limits the possibilities of non-invasive ultrasonic
techniques). Among the possible solutions, the French Atomic Energy commission is
investigating the possibilities of the torsional wave sensor, which would allow a continuous
monitoring.

Now focus on the means of measuring the water level. A torsional wave of "nite duration
is propagated in a waveguide of a non-circular cross-section. It is generated at one end of
the waveguide and re#ected at the other end. The re#ected wave is then detected by the
same transducer which has generated it. The propagation time is measured, and
information about the #uid surrounding the waveguide (density, level, etc.) can then be
inferred, using the theoretical model.

The following notation is used (see Figure 2). Consider a cylinder of length ¸ and axis
z , with a)z)b. The surface of its cross-section is denoted by E, and its lateral surface is
called p.

1.3. PREVIOUS WORKS

To begin with, Lynnworth, from the Panametrics company, experimentally showed
a relation between the phase velocity of a torsional wave propagating in a waveguide of
a non-circular cross-section and the liquid density of the surrounding #uid. In 1979, Arave
[1] related experiments carried out in two-phase #uids.

The theoretical aspect was then tackled by Bau [2] in 1986, for an incompressible
surrounding #uid. In 1987, Wang's [3] works took the viscosity of the #uid into account. In
1989, Kim [4] looked for the best geometry of the waveguide. In 1993, some applications for
two-phase #uids, with separated phases, were published [5].
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Afterwards, these authors stopped working on that subject. Some improvements were
proposed by other authors (for example, taking the e!ects of the temperature into account
[6]), but still considering an incompressible surrounding #uid.

Yet, in a reactor vessel, the #uid can turn into a two-phase #uid, which leads one to
consider the presence of bubbles. As a "rst step, a model which allows the #uid to be
compressible is developed in this paper. Its viscosity is not taken into account, but can easily
be introduced when a two-phase #uid is considered (for example, a complex density o

f
and

a complex sound velocity c
f
in the #uid can be accounted for). Part of the work is to look for

an expression of the apparent phase velocity of the torsional wave which would take the
compressibility of the surrounding #uid into account. It will be compared to that given in
the above-mentioned articles, for an incompressible #uid:

c"S
k J

o
s
I
s
#o

f
I
f

. (1)

Here, o
f

is the #uid density, o
s
is the waveguide density, k is its shear modulus, J is the

torsion constant (depending on the geometry of the waveguide), I
s
is the polar inertia of the

waveguide and I
f

is the apparent inertia of the #uid.

2. METHOD

2.1. THE DIFFERENT STEPS

Use will be made of Hamilton's principle, which states that [7] &&among all the
displacements that satisfy the presented boundary conditions and the prescribed conditions
at t"t

1
and t"t

2
, the actual solution renders the integral :t2

t1
(¹I !<I #=I ) dt stationary,

i.e.,

dP
t2

t1

(¹I !<I #=I ) dt"0. (2)

In this integral, ¹I denotes the kinetic energy of the system, <I denotes the potential energy,
and =I is the work done by the external forces acting on the system''.

It seems easier to "rst solve the problem for a harmonic excitation, and then go back to
the transient problem by an inverse Fourier transform. Write fI for a time-dependent
function, and, in the harmonic regime, fI"R ( f e~iut). Equation (2) is then written as

d (¹!<#=)"0. (3)

The mechanical system is the waveguide. External forces acting on it are due to both the
torsion momentum imposed at one end of the waveguide and the #uid pressure on the bar
boundary. The corresponding works are respectively=

1
and =

2
, with ="=

1
#=

2
.

The variational method requires the following steps:

f approximation of ¹ and < in terms of h, the torsion angle, based on the asumption that
the transverse dimension of the guide is &&small'' (section 3);

f solving the exterior Neumann problem for the Helmholtz equation in the compressible
#uid, to get the expression of the pressure exerted by the #uid (a long-wavelength
approximation will be used), from which =

2
(h) derives (section 4);

f applying equation (3), to get an approximated torsion equation and the phase velocity of
the torsional wave (section 5).

Then, application to water-level measurement can be considered (section 6).
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2.2. ELLIPTIC CO-ORDINATES AND MATHIEU FUNCTIONS

On the grounds mentioned below, the cross-section of the waveguide is supposed to be
elliptic. Thus, the Neumann problem for the Helmholtz equation has an analytical solution,
using elliptic co-ordinates (which leads to solutions in terms of Mathieu functions).
Moreover, experiments [4] showed that with such a geometry, the torsional wave is quite
sensitive to the external #uid characteristics.

2.2.1. Some properties of elliptic co-ordinates (see reference [8] for example)

Referring to Figure 3, any point M can be described by its elliptic co-ordinates (m, g),
related to its Cartesian co-ordinates (x

1
, x

2
) by

x
1
"h coshm cos g,

(4)

x
2
"h sinh m sin g,

where h is the half-interfocal distance of any ellipse m"constant (and any hyperbola
g"constant).

Later on, the following relations between elliptic (Am, Ag) and Cartesian (A
1
, A

2
)

co-ordinates of a vector A will be needed:

Am"
cos g sinh m A

1
#sin g cosh m A

2
Jcosh2 m!cos2 g

,

(5)

Ag"
!sin g cosh m A

1
#cos g sinh m A

2
Jcosh2 m!cos2 g

.

For the elliptic cylinder, a third co-ordinate z, with z"x
3

is used.
Figure 3. System of elliptic co-ordinates.
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2.2.2. Mathieu functions (see references [9, 10]).

Consider the Helmholtz equation in elliptic co-ordinates:

1

h2 (cosh2 m!cos2 g)A
L2/
Lm2

#

L2/

Lg2B#k2/"0. (6)

Looking for a solution with separated variables, / (m, g)"/m(m) /g(g), one gets

/Am
/m

#k2h2cosh2 m"k2h2cos2 g!
/Ag
/g

(7)

from which

/Ag#(c!k2h2cos2 g)/g"0 (8)

and

/Am!(c!k2h2cosh2 m)/m"0 (9)

where c is the separation constant.
For the function /g(g) to be periodic, the separation constant c can take a countable

sequence of values only. The subsequences corresponding to even and odd functions are
denoted by ce

m
and co

m
respectively. Thus, the periodic general solution of equation (8) takes

the form

/g(g)"
=
+

m/0

ae
m
Se
m
(kh, cos g), c"ce

m
, m"0, 1, 2, ... ,

(10)

/g(g)"
=
+

m/1

ao
m
So
m
(kh, cos g), c"co

m
, m"1, 2, 3, ... .

Se
m
(kh, cos g) and So

m
(kh, cos g) are respectively the even and odd Mathieu functions of the

"rst kind and order m.
Later on, only the odd Mathieu functions of the "rst kind are involved. Use will be made

of

f their expansion into Fourier series:

So
2m

(kh, cos g)"
=
+
n/1

Bo
2n

(kh, 2m) sin(2ng),

(11)

So
2m`1

(kh, cosg)"
=
+
n/0

Bo
2n`1

(kh, 2m#1) sin((2n#1)g);

f the de"nition of their norm:

P
2n

0

So
m
(kh, cos g)So

n
(kh, cos g) dg"dn

m
Mo

m
(kh). (12)
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Then, the general solution of equation (9) corresponding to the same separation constants
takes the form

/m(m)"
=
+

m/0

Mce
m

Je
m
(kh, cosh m)#de

m
Ne

m
(kh, cosh m)N, c"ce

m
, m"0, 1, ... ,

(13)

/m(m)"
=
+

m/1

Mco
m

Jo
m
(kh, cosh m)#do

m
No

m
(kh, cosh m)N, c"co

m
, m"1, 2, ... .

Je
m
(kh, coshm) and Jo

m
(kh, cosh m) are the modi"ed Mathieu functions of "rst kind and order

m; Ne
m
(kh, coshm) and No

m
(kh, cosh m) are the modi"ed Mathieu functions of second kind and

order m.
The following notations are also used:

He
m
"Je

m
#iNe

m
,

(14)

Ho
m
"Jo

m
#i No

m
.

3. TORSION OF THE WAVEGUIDE IN <AC;O

It is assumed that:

f the torsion results in a small deformation of the waveguide, so that the torsion of
a cross-section is approximated by a rotation;

f the wavelengths in the waveguide are much larger than the dimensions of its cross-section.
As a consequence, the torsion angle h is supposed to depend only on z;

f the length ¸ of the waveguide is much larger than any characteristic dimension of its
cross-section. As a result, the exterior forces acting on the waveguide boundary p are
small compared to the interior forces due to the torsion. Thus, a stress-free boundary
condition on p will be written.

Let M(b) be a torsion momentum imposed at the end z"b of the waveguide. Then

d=
1
"M(b) dh(b) . (15)

To establish the expressions of ¹ and <, classical methods of continuum mechanics are
used. Landau and Lifchitz [11] will be followed.

3.1. RELATION BETWEEN THE TRANSVERSE COMPONENTS OF THE DISPLACEMENT AND THE

TORSION ANGLE

Consider any point P (x
1
, x

2
) in the cross-section, before deformation. After deformation,

the cross-section has turned and P is at P@(x
1
#u

1
, x

2
#u

2
) (see Figure 4).

Polar co-ordinates (o, u) are used to get the expressions for u
1

and u
2
:

PG
x
1
"o cosu,

x
2
"o sinu,

P@G
x
1
#u

1
"o cos(u#h),

x
2
#u

2
"o sin(u#h).

(16)

Then

u
1
"x

1
(cosh!1)!x

2
sin h,

(17)

u
2
"x

2
(cosh!1)#x

1
sin h.



Figure 4. Torsion of a cross-section.
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As the angle h is small, one can replace cos h and sin h by the "rst term of their Taylor series:

cos h"1#O(h2),
(18)

sinh"h#O(h3).

One "nally gets

u
1
"!x

2
h#O(h2),

(19)

u
2
"x

1
h#O(h3).

Applying equation (5), one gets the expression of the transverse components of the
displacement in elliptic co-ordinates:

um"
h cos g sin g

Jcosh2 m!cos2 g
h,

(20)

ug"
h coshm sinh m

Jcosh2 m!cos2 g
h.

To get the expression of u
z
, more considerations are needed. They are dealt with in the next

sections.

3.2. CONSEQUENCE OF THE STRESS-FREE BOUNDARY CONDITION

First look for the expression of the stress components in the bar.
Staying within the frame of linear elasticity, any component;

ij
of the strain tensor U can

be written in terms of the components u
i
of the displacement u:

;
ij
"1

2
(u

i
,
j
#u

j
,
i
), (21)
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where u
i
,
j
"Lu

i
/Lx

j
. Inserting equation (19) in equation (21), one gets

U"A
0 0 1

2
(!x

2
h
,3
#u

3,1
)

0 0 1
2
(x

1
h
,3
#u

3,2
)

1
2
(!x

2
h
,3
#u

3,1
) 1

2
(!x

1
h
,3
#u

3,2
) u

3,3
B , (22)

j and k being the LameH coe$cients of the bar. Hooke's law is written as

p
ij
"jTrUdj

i
#2k;

ij
(23)

which leads to

r"A
ju

3,3
0 k(!x

2
h
,3
#u

3,1
)

0 ju
3,3

k(x
1
h
,3
#u

3,2
)

k (!x
2
h
,3
#u

3,1
) k (x

1
h
,3
#u

3,2
) (j#2k)u

3,3
B . (24)

As mentioned at the beginning of section 3, one can neglect the exterior forces which act
on the waveguide boundary. This stress-free boundary condition is written on p as

p
ij
n
j
"0, (25)

where n is the unit vector normal to p and pointing out to the waveguide exterior. One can
infer from (24) that, on this surface:

u
3,3

"0,

(!x
2
h
,3
#u

3,1
)n

1
#(x

1
h
,3
#u

3,2
)n

2
"0. (26)

The "rst equality (26) gives

u
3
"C / (x

1
,x

2
) (27)

where C is a constant. Using the second equation (26), one gets, on p:

(x
2
n
1
!x

1
n
2
)h

,3
"C (/

,1
n
1
#/

,2
n
2
). (28)

As a result, h
,3

is constant on p. Without loss of generality, one can choose

h
,3
"C (29)

Finally, on the boundary p:

u
3
"/ (x

1
,x

2
)h

,3
(30)

where /, which is called the torsion function, is the solution of

/,
1
n
1
#/,

2
n
2
"x

2
n
1
!x

1
n
2
. (31)



338 A. GOUBEL-LENOEG L E¹ A¸.
Equation (30) implies that, in the interior of the bar, u
3

has the following form:

u
3
(x

1
, x

2
, x

3
)"/ (x

1
, x

2
)h

,3
#v

3
(x

1
,x

2
,x

3
) (32)

with

v
3
(x

1
,x

2
, x

3
)"0 on p. (33)

According to the assumption that the transverse dimensions of the waveguide are small,
v
3

can be expanded into a Taylor series as

v
3
(x

1
, x

2
, x

3
)"v

3
(0, 0, x

3
)#x

1
v
3
,
1
(0, 0,x

3
)#x

2
v
3
,
2
(0, 0,x

3
)#2 . (34)

The condition (33) gives

v
3
(0, 0, x

3
)"0. (35)

Thus, as a "rst order approximation,

v
3
(x

1
, x

2
,x

3
)"0. (36)

As a result, u
3

has the form (30) everywhere.

3.3. THE TORSION FUNCTION AND THE LONGITUDINAL COMPONENT

OF THE DISPLACEMENT

From equation (31), one has, on the bar boundary p:

(!x
2
#/

,1
)n

1
#(x

1
#/

,2
)n

2
"0 (37)

which is a "rst condition on /.
Moreover, the equilibrium of the bar is written as

p
ij
,
j
"0 (38)

which, from equations (24), (29) and (30), gives the second condition on /:

*/"0; (39)

/ can then be determined. For an elliptic cross-section with half-axes a and b, the torsion
function is [12, section 36]

/"!

(a2!b2)

(a2#b2)
x
1
x
2
. (40)

The three components of the displacement can now be written. The "rst approximation is

u
1
"!x

2
h,

u
2
"x

1
h, (41)

u
3
"/(x

1
, x

2
)h

,3
.
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3.4. KINETIC ENERGY OF THE WAVEGUIDE

From equation (41), one gets

u
1, t

"!x
2
hI
,t
,

u
2, t

"x
1
hI
, t
, (42)

u
3, t

"/ (x
1
,x

2
)hI

,3t
.

By de"nition

¹3 "P
x3
P PEC

1

2
o
s
(u2

1,t
#u2

2,t
#u2

3,t
)DdEdx

3
, (43)

so

¹3 "P
x3

1

2
o
s
I
s
hI 2
,t
dx

3
#P

x3

1

2
o
s
PhI 2

,3t
dx

3
(44)

with

I
s
"PPE(x2

1
#x2

2
) dE; P"PPE/2(x

1
,x

2
) dE. (45)

I
s

is the polar inertia of the waveguide, and P is its warping inertia. For an elliptic
cross-section,

I
s
"

nab

4
(a2#b2); P"

na3b3(a2!b2)2

24 (a2#b2)2
. (46)

Finally, from equation (44) one gets the following expression of ¹ in the harmonic regime:

¹"P
x3

1

2
o
s
I
s
u2hh*dx

3
#P

x3

1

2
o
s
Pu2h

,3
h*
,3

dx
3
. (47)

Now, in the present case, h is a real function.

3.5. POTENTIAL ENERGY OF THE WAVEGUIDE

< is written in terms of the strain and stress tensors as

<"P
x3
P PE

1

2
p
ij
;

ij
dEdx

3
. (48)

From equations (41), (22) and (24), one gets

<"P
x3

1

2
kJh2

,3
dx

3
(49)
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with

J"PPE(x2
1
#x2

2
#x

1
/
,2
!x

2
/
,1
) dE (50)

the torsion constant. For an elliptic cross-section, we have

J"
na3b3

(a2#b2)
. (51)

4. THE EXTERIOR NEUMANN PROBLEM IN THE FLUID

4.1. THE TERMS OF THE PROBLEM

Because a compressible #uid is being considered, acoustic radiation into the #uid has to
be accounted for.

First, consider the problem of an in"nite #uid. Then, because the aim is to measure #uid
levels, a partially immersed waveguide will be considered. The #uid occupies a half-space
only, with a free surface on which the acoustic pressure is zero.

4.1.1. In an in,nite -uid

To solve the problem easily, the cylinder is supposed to be ba%ed (Figure 5).
Let p (m"m

0
, a)z)b) be the waveguide boundary, and X its exterior, which contains

the #uid. At a point of p, call n the unit vector normal to p and pointing out to the
waveguide interior. Considering a harmonic e~iut motion, the acoustic pressure p (M) at
a point M (m, g, z) in the #uid satis"es the following boundary value problem:

(D#k2
f
) p (M)"0 in X,

L
n
p (M)"o

f
u2u

n
for m"m

0
, a)z)b,

"0 for m"m
0
, z(aZz'b,

Limit absorption principle,

(52)

where u is the angular frequency, k
f

is the wave number in the #uid, and u
n
is the normal

component of the waveguide displacement.
Figure 5. The ba%ed waveguide.
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Let d
M{

(M) be the Dirac measure at M@(m@, g@, z@). The Green function of the problem will
satisfy

(D
(m,g,z)#k2

f
)G(M,M@)"d

M{
(M) in X,

L
n
G"0 for m"m

0
Limit absorption principle,

, (53)

where D
(m,g,z) denotes the Laplacian for which the terms with derivatives with respect to the

three co-ordinates m, g and z are taken into account.
Now taking the space Fourier transform of equation (53), de"ned by

fK (Z)"S f (z) , e~2*nzZT (54)

One has:

D
(m,g)G) (m, m@, g, g@, Z, z@)#K2

f
G) (m, m@, g, g@,Z, z@)"e~2inZz@dm{(m)?dg{(g) (55)

with K2
f
"k2

f
!4n2Z2; K

f
'0 if K2

f
'0, and IK

f
'0 otherwise.

So

G) (m, m@, g, g@,Z, z@)"e~2inzZ G
Kf

(m, m@, g, g@), (56)

where G
Kf

(m, m@, g, g@) is de"ned by

G
D
(m,g)GKf

(m, m@, g, g@)#K2
f
G

Kf
(m, m@, g, g@)"dm{(m)?dg{(g) in X,

L
n
G

Kf
"0 for m"m

0
Limit absorption principle.

, (57)

Then, G
Kf
"GI

Kf
#GD

Kf
, where GI

Kf
is the free "eld Green function; and GD

Kf
is the di!racted

"eld. It satis"es the homogeneous Helmholtz equation, a non-homogeneous boundary
condition, and the limit absorption principle.

The Green representation of the space Fourier transform of the pressure in the #uid is
written as

p' (m, g, Z)"!SG) (m, m
0
, g, g@,Z, z@) ,

g{,z{
L
n
p(m

0
, g@, z@) dp(m0, g@, z@)T, (58)

where S. ,
g@,z@

.T means that the integration variables of the duality product are g@ and z@.
Then, to get p (m

0
, g, z), the inverse space Fourier transform of p' (m, g, Z) must be evaluated.

To obtain an analytical result, a long-wavelength approximation is used.
The elementary work done by the #uid pressure on the waveguide can then be calculated :

d=
2
"PPp

p n . dudp. (59)

4.1.2. ¹aking into account the surface of the -uid

Until now, the waveguide was considered to be immersed in an in"nite #uid. However,
there is the interface between the #uid and the air, on which the pressure should be zero. The
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method of images, illustrated in Figure 6, will be used: the free surface is at z"0. The
waveguide, with a)z)b, has a side boundary named p

1
. Its image, with !b)z)!a,

has a side boundary named p
2
.

The new problem is written in the same way as the previous one, but with p"p
1
#p

2
.

The Green function is the same, but the boundary conditions for the pressure are expressed
di!erently:

L
n
p (M)"o

f
u2u

n
(g, z) on p

1
,

L
n
p (M)"!o

f
u2u

n
(g,!z) on p

2
.

(60)

Then, equation (58) is changed into

p' (m, g,Z)"!SG) (m, m
0
, g, g@,Z, z@) ,

g@,z@
L
n
p (m

0
, g@, z@) dp1

(m
0
, g@, z@)T

(61)

!SG) (m, m
0
, g, g@,Z, z@) ,

g@,z@
L
n
p(m

0
, g@, z@) dp2

(m
0
, g@, z@)T.

The problem is treated in section 4.5. Initially the focus is on an in"nite #uid.

4.2. THE SPACE FOURIER TRANSFORM OF THE GREEN FUNCTION

In this section, we look for the expression of

G) (m, m@, g, g@,Z, z@)"e!2inzZ (GI
Kf

(m, m@, g, g@)#GD
Kf

(m, m@, g, g@)). (62)

From reference [13, p. 1421],

GI
Kf

(M,M@)"!iG
=
+

m/0

Se
m
(K

f
h, cos g@)

Me
m
(K

f
h)

Se
m
(K

f
h, cos g)Je

m
(K

f
h, cosh m)He

m
(K

f
h, cosh m@)

(63)

#

=
+

m/1

So
m
(K

f
h, cos g@)

Mo
m
(K

f
h)

So
m
(K

f
h, cos g) Jo

m
(K

f
h, cosh m)Ho

m
(K

f
h, cosh m@)H
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for m(m@

"!iG
=
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m/0
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f
h, cos g@)
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m
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m
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f
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m
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f
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=
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m
(K

f
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m
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f
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m
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f
h, cosh m@)Ho

m
(K

f
h, cosh m)H

for m@(m.

Because GD
Kf

has to verify the homogeneous Helmholtz equation and the limit absorption
principle, an expression of the following form is sought:

GD
Kf

(M, M@)"
=
+

m/0

ao
m
(K

f
h, cosh m@, cos g@) So

m
(K

f
h, cos g)Ho

m
(K

f
h, cosh m) (64)

#

=
+

m/0

ae
m
(K

f
h, cosh m@, cos g@)Se

m
(K

f
h, cos g)He

m
(K

f
h, cosh m)

and ao
m

and ae
m

are calculated so that the condition LmGKf
(M,M@)"0 for m"m

0
is veri"ed.

One "nds that
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m
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f
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f
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f
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0
(K

f
h, cosh m@, cos g@)"0.

Finally,
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for m(m@
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4.3. THE SPACE FOURIER TRANSFORM OF THE PRESSURE

4.3.1. In the -uid

The Green representation of the space Fourier transform of the pressure in the #uid is
written as

p' (m, g, Z)"!SG) (m, m
0
, g, g@, Z, z@) ,

g@,z@
L
n
p (m

0
, g@, z@) dp(m0, g@, z@)T. (67)

From equation (52), for z@3p,

L
n
p (m

0
, g@, z@)"o

f
u2u

n
(m

0
, g@, z@) (68)

with, from equation (20);

u
n
(m

0
, g@, z@)"!um0(m0, g@, z@)"!

hcos g@sin g@

Jcosh2m
0
!cos2g@

h(z@). (69)

Moreover, in elliptic co-ordinates;

dp (m
0
, g@, z@)"hJcosh2m

0
!cos2 g@ dg@dz@. (70)

Now write

h
*a,b+(z)"G

h (z) if a)z)b,

0 otherwise.
(71)

Then

p' (m, g, Z)"Se!2inZz@ G
Kf

(m, m
0
, g, g@) ,

g@,z@
o
f
u2h2 cos g@ sin g@ h

*a,b+(z@)T (72)

"o
f
u2h2h)

*a,b+(Z)SG
Kf

(m, m
0
, g, g@) ,

g@
cos g@ sin g@T
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g@Pcos g@ sin g@ is an odd function in g@. Thus, one does not need the even terms in G
Kf

. So
write that

p' (m, g, Z)"o
f
u2h2hK

*a,b+(Z)SGo
Kf

(m, m
0
, g, g@) ,

g@
cos g@ sin g@T. (73)

From (67),

Go
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(m, m
0
, g, g@)
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=
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f
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0
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f
h, coshm

0
) B (74)

The last numerator of equation (74) is a Wronskian which equals (!i) for the considered
functions. So one gets

p' (m, g, Z)

"o
f
u2h2hK
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=
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4.3.2. On the waveguide boundary

Writing m"m
0

in equation (75), one "nally has

p' (m
0
, g, Z)"o

f
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nh2

2
hK
*a,b+(Z)

(76)
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4.4. LONG-WAVELENGTH APPROXIMATION

4.4.1. ¹he space Fourier transform of the pressure

With such an expression of p' (m
0
, g, Z), one cannot get an analytical expression of the

inverse space Fourier transform. Noting that in the frequency range of the torsional wave
(around 100 kHz), the wavelength j in the #uid is much larger than the characteristic
dimension of the cross-section, a &&long-wavelength approximation'' will be sought.
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Therefore, Mathieu functions will be "rst expressed in terms of Bessel and Neumann
functions (see reference [13, pp. 1568}1573]). An approximation in terms of a truncated
series of the successive powers of (K

f
h) is sought. To this aim, the function p' is expanded

into a formal Taylor series of (K
f
h) around K

f
h"0.

p' (m
0
, g, Z)K!o

f
u2h2h)

*a,b+(Z)
(77)

]GA
1

4
#

(e!2m
0#3e2m

0)

192
(K

f
h)2B sin (2 g)!

(K
f
h)2

192
sin (4 g)H

4.4.2. ¹he inverse space Fourier transform of the pressure approximation

Take the inverse Fourier transform of each term, assuming that the result will be, at least,
an asymptotic series. Now compute the lowest order term. Writing

A"h2
(e~2m

0#3e2m
0)

192
and B"

h2

192
(78)

one gets

p (m
0
, g, z)

"Sp' (m
0
, g, Z) ,

Z
e2inzZT

(79)
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fB sin (2g)!Bk2
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sin (4g)BSh4
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Z
e2inzZT

!o
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u2h2 (A sin (2g)!B sin (4g))S!4n2 Z2h)
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Z
e2inzZT

which gives

p (m
0
, g, z)K!o

f
u2 h2GAA

1

4
#Ak2

fB sin (2g)!Bk2
f
sin (4g)B h

*a,b+(z)
(80)

#AA sin (2g)!B sin (4g)B
L2h

*a,b+
Lz2 H.

4.4.3. Calculation of the work done by the -uid pressure

The work done by the #uid pressure while the bar is submitted to an elementary rotation
dh is written as

d=
2
"PPp

pn ) du (dh) dp

(81)

"!P
b

~aP
2n

0

p (m
0
, g, z) dum0(dh) hJcosh2 m

0
!cos2 gdgdz.

Using equations (80) and (20), one "nally gets

d=
2
KP

b

a
o
f
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nh4

2 Gh (z)A
1

4
#Ak2

fB#A
L2h
Lz2H dhdz. (82)
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4.5. TAKING INTO ACCOUNT THE FREE SURFACE OF THE FLUID

From equations (60) with (20),

L
n
p (M)KG
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cos g sin g
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0
!cos2 g

h (z) on p
1
,

o
f
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0
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2
.

(83)

Then, following the method developed in section 4.3, one gets
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0
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So, on the waveguide boundary,
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and, after the long-wavelength approximation,
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The inverse space Fourier transform gives
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0
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4
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f
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f
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Lz2

!

L2h
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Lz2 BH.
Then, calculate

d=
2
"PPp

pn ) du (dh) dp. (88)

In the end, one "nds (82) again that

d=
2
KP

b

a
o
f
u2

nh4

2 Gh(z)A
1

4
#Ak2

fB#A
L2h
Lz2H dhdz. (89)

So, due to the approximation of the Mathieu functions for long wavelength, one sees that
the free surface has no in#uence on the previous results.
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5. THE APPROXIMATE TORSION EQUATION OF THE FLUID-LOADED BAR

Now all the elements namely, equations (15), (44), (49) and (82), to apply Hamilton's
principle (3) to the functions with a harmonic time dependence have been obtained, the
integration being taken over an integer number of periods. The following approximate
torsion equation is obtained:

Ak J#o
f
u2A

n h4

2 B
L2h
Lz2

#Aos
I
s
#o

f

nh4

2 A
1

4
#A

u2

c2
f
BBu2 h (z)"0. (90)

From equation (90), the following expression of the apparent phase velocity is obtained

c (u)KS AkJ#o
f
A

nh4

2
u2B

Aos
I
s
#o

f

nh4

2 A
1

4
#A

u2

c2
f
BB

(91)

which can be compared with that obtained for an incompressible #uid (1). It emphasizes the
in#uence of the #uid, as:

f an additional sti!ness, o
f
A(nh4/2)u2, which was neglected by previous authors;

f an additional inertia, o
f
(nh4/2)(1/4#A(u2/c2

f
)), which has two components: the

component given by previous authors, o
f
nh4/8, and an added one, o

f
(nh4/2)Au2/c2

f
,

which is due to the compressibility of the #uid.

Figure 7 highlights the importance of these added terms for water at the conditions of
a pressurized water reactor. The waveguide is in stainless steel, with k"7)57]1010 Pa and
o
s
"7900 kg/m3; the cross-section is elliptic, with a"3 mm and b"1 mm; the water at

1)55]107 Pa and 3253C has a density of o
f
"662 kg/m3 [14], and c

f
"783 m/s (from

reference [15]). In these conditions, the simulation given in Figure 7 shows that the
correction on the apparent phase velocity brought by the model may reach 4)7% at
150 kHz.
Figure 7. The apparent phase velocity of the torsional wave propagating in a waveguide immersed in water at
1)55]107 Pa and 3253C, as a function of the excitation frequency. } } } : incompressible #uid model; ** :
compressible #uid model.
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6. SIMULATION OF THE FLUID-LEVEL MEASUREMENT

It is assumed that the signal spectrum has a small bandwidth centered around an angular
frequency u

0
. Thus, the #uid-loaded waveguide can be considered as a medium with

a constant torsional velocity c (u
0
). Now consider a partially immersed waveguide, as

presented in Figure 8. Dt, the total propagation time, is experimentally measured. The
unknown parameter is a

L
.

The propagation time Dt can be written as Dt"2(Dt
1
#Dt

2
), where Dt

1
is the

propagation time in the "rst part of the bar (of length ¸(1!a
L
)), and Dt

2
the propagation

time in the immersed part of the bar (of length a
L
¸). Let c

0
be the in vacuo phase velocity,

practically in air. Then

c
0
"S

kJ

o
s
I
s

. (92)

The apparent phase velocity in the immersed part is c (u) , given by (91).
One can now decompose Dt as

Dt"2A
¸ (1!a

L
)

c
0

#

a
L
¸

c(u)B. (93)

a
L

is "nally deduced from equation (93):

a
L
"

c (u)

c
0
!c(u) A

Dtc
0

2¸
!1B. (94)

To highlight the improvement given by the model, simulations were made, considering
surrounding #uids which emphasized the discrepancy between the case for which the
compressibility is taken into account and the case for which it is not. Among the di!erent
#uids, the one that could be used on a scale model in laboratory, in the near future was
chosen. It was decided to work with methylene iodide. Its required characteristics are
o
f
"3324 kg/m3 and c

f
"973 m/s [16]. Consider a frequency of 100 kHz. The waveguide

has the same characteristics as in section 5. Its length is supposed to be ¸"3 m.
Figure 9 shows the propagation time of the torsional wave in terms of a

L
. The correction

brought by the model reaches 4% for a completely immersed waveguide.
Figure 10 highlights the pertinence of the corrective terms for the application to
#uid-level measurement. Indeed, the simulation shows calculated a

L
in terms of the
Figure 8. Partially immersed waveguide for #uid-level measurement.



Figure 9. Propagation time of the torsional wave in the waveguide partially immersed in methylene iodide
successively considered as compressible and incompressible, as a function of the immersed length. } }} : (Dt)inc.;
22 : (Dt)comp..

Figure 10. a
L
calculated from the propagation time of the torsional wave in the waveguide partially immersed in

methylene iodide: } }}, incompressible #uid model; **, compressible #uid model.
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propagation time, comparing the case for which compressibility is taken into account with
the case for which it is not. For example, the added terms induce a correction of 18)8 % on
a
L

for a measured propagation time of 3)85 ms.
As underlined before (see section 1.3), taking the compressibility of the surrounding #uid

into account is only a "rst step in the improvement of the model. Indeed, in a reactor vessel,
the #uid can turn into a two-phase #uid. Formula (91) requires expressions of o

f
and c

f
, the

equivalent density and sound velocity of the two-phase #uid. This implies having a model
which correctly describes the reactor conditions. As a "rst example, consider a simple model
of a two-phase #uid: water with a given density of uniform-sized air bubbles. It is assumed
that the radius of the bubbles is smaller than 500 lm, the resonance frequency of the
bubbles is much higher than the frequency of the torsional wave (100 kHz), and the



Figure 11. a
L
calculated from the propagation time of the torsional wave in the waveguide partially immersed in

a mixture of water and uniform-sized air bubbles, with a void fraction of 3]10~4: } }}, incompressible #uid model;
**, compressible #uid model.
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wavelengths in the waveguide are larger than the radius of the bubbles. Under those
conditions, the density of the mixture and the speed of sound in it are written from reference
[17] as

o
f
"qo

a
#(1!q)o

w
,

c
f
"

1

S
(1!q)2

c2
w

#

q2
c2
a

#

q(1!q)o
w

cP
0

, (95)

where q is the void fraction of the mixture (for our simulation, q"3]10~4),
o
w
"998 kg/m3 is the density of water, o

a
"1)3 kg/m3 is the density of air, c

w
"1500 m/s is

the speed of sound in water, c
a
"330 m/s is the speed of sound in air, c"1)4 is the ratio of

speci"c heats and P
0
"101 300 Pa is the atmospheric pressure.

Figure 11 shows calculated a
L

in terms of the propagation time of the torsional wave. It
compares the results obtained by considering the mixture as an incompressible #uid with
o
f

from equation (95) with the results from the improved model, with o
f

and c
f

from
equation (95). The added terms induce a correction of 47% on a

L
for a measured

propagation time of 3)43 ms.

7. CONCLUDING REMARKS

This work focused on the propagation of a torsional wave in a waveguide immersed in
a compressible #uid. An approximate analytical expression of the apparent phase velocity
of the wave has been obtained. It shows the in#uence of the compressibility of the #uid, and
depends on the frequency of the wave, on the geometry of the waveguide, and on the celerity
of waves in the #uid considered. Then, this result has been applied to #uid-level
measurement. Simulations were made, which showed that the correction brought by our
improved model may be signi"cant.
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In the near future, some experiments will be carried out. We also plan to improve the
theoretical model by considering a two-phase #uid.
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